THE FLOW OF HEAT FROM THE CHIP-FORMATION
ZONE TO THE WORKPIECE

Yu. P. Rasputin UDC 536.21+621.910.71

The problem of heat flow from the strain zone of metal to the workpiece in free orthogonal
cutting is solved by the method of high-speed sources.

The cutting of metals is accompanied by heat release in the zone of plastic deformation (Fig. 1).
Numerous publications [1, 3, 4, 6] have been devoted to the investigation of the heat flux from this zone to
the workpiece. The authors of these investigations neglect either one of the components of the medium
velocity, or one component of the latter together with the inclination of the source to the shear plane. A
solution of this problem which takes more fully into consideration the kinematics of this process is pre-
sented here.

Let us consider a steady free orthogonal cutting process with plane deformation of metal and total
heat, equivalent to the power spent on chip formation, released in a narrow zone. We shall consider the
latter as a plane source of uniform intensity.

The heat flux reaching the workpiece from the strain zone can be calculated when the temperature
field in the neighborhood of the shear line L —L is known. Let us determine this field.

It was shown in [2] that the process of plane heat propagation from a powerful high-speed linear source
may be considered as the sum of independent one-dimensional heat propagation processes in infinite ele~
mentary rods. We shall make use of this property of the temperature fields of fast moving sources.

We separate in the workpiece a rectangular element (Fig. 1) and shall consider it as an infinite rod
with heat-insulated sides. This rod moves through the source at velocity v, and at the same time travels
along it at velocity v4. The latter in conjunction with the geometrical parameters of the cutting process
determines the time of heating the rod
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The temperature field U (x, t) of the rod during its motion reproduces approximately the contour of the actual
field in front of the strain zone.

The process of heat propagation in such a rod is defined by the Fourier —Kirchoff equation

cy (iq— — 1 ai] ) = div (A grad U). (2)

This equation is written in a system of coordinates attached to the source.

Taking this into consideration, we reduce the problem of the temperature field in the neighborhood of
the shear line to the following: find a solution of the heat conduction equation (2) satisfying boundary condi-

tions
U, for x=0,

0 for 0<<x<C 4 o0,
U@, 1)=1U,.

Ux, 0)= (3
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Fig. 1. Diagram of the temperature field and heat flow (the strain zone is
shown cross-hatched).

Bk

Fig. 2. Dependence of the dimensionless parameter Q on the Peclet num-
ber [1) QF; 2) Q™).

Known solutions of this problem do not take fully into consideration the kinematics of motion of the
medium. For example, in {3] and [4] components v, and v, of the rod velocity are, respectively, assumed
to be zero. Such solutions are particular cases of the stated problem.

The solution derived here takes into consideration both of these velocity components.

By the substitution

U . U Uf
x, ) =T(x, t)yexp | — % X — 0 t (4

Eq. (2) is reduced to the canonical form of the- heat conduction equation

2
or _ 0T _ (5)
ot ox?
The boundary conditions for function T become
T(x, 0) = {UD for x==0,
0 for 0<<x<< 4 o0,

(6)

02
T(0, t)=erxp|: L t].
4a

Funetion
ool
- y 2
T, )= —2E 4a exp[—-—"*]dr )
2yna § (E—7)P2 da(t— )
satisfies Eq. (5) and boundary conditions (6) [5].
Substituting (7) into (4), we obtain the looked -for solution
Uk ) = U —2— exp [— X 5 exp [-—‘5-—22] dz; (8)
Va 2a VA
x/ZVE?

here

6— ( % >2 Zm X
JSa ’ Qad =1y
Using the additivity property of the definite integral, we rewrite formula (8) in the form

x/2Val

X X 2 8
Ulx, §) =U, . AN —_ = —_— 72 dZ]. (9)
w0 =thfow (5] e (=)= [ e 7
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o) Since it is independent of time t, the first term of solution (9)
( defines in a system of coordinates attached to the source the stabilized
400 7 temperature of the rod. The second term depends on time and repre-
o] sents the nonsteady temperature field superposed on the first. The v,
Jo0 /°/ velocity component appears explicitly in (9), and component v,in terms
/o‘ of the rod heating time. Temperature fields with one of the compo-
200 /u nents of the medium velocity vanishingare particular cases of (9).
» It is possible to calculate from a known temperature field the

/ 2 J v heat flux to the workpiece from the chip-formation zone. In the positive
Fig. 3. Dependece of the heat direction of the OX-axis it is
flux & (W) to the workpiece on 3 ? aU
the cutting speed v (m /sec). ' ®, = _WZS F dt.
x==0

Such flux would reach the workpiece when the angle 8 of inclination of the source is zero. In an actual
cutting process B is not equal to zero. Hence the workpiece gets only the part

oUu
O, =—2Ab C dl
1 jax os f (10)
L

of flux 51 passing through the shear plane L. The remaining heat is carried away by the chip. The incli-
nation of the source to the shear plane is taken into account in formula (10).

The derivative 8U/0x appearing in (10) is taken at the point of the rod moving along the shear plane.
It can be found by differentiating (9). However formula (9) contains an integral which cannot be expressed
in terms of elementary or tabulated special functions, which makes the calculation and analysis of heat flow
difficult. If is, therefore, expedient to determine the nature and extent of the heat flux variation by approxi-
mate methods. TFor this we shall find two functions &F and &F* which would satisfy conditions

O <D, L T,
lim| @} — @}| =0,
Fe» + 0.

Let us agsume that insolution (9) 6 = 0. This results in a lowering of the temperature at all points of
the rod, except at x = 0 and x =+%, where the temperature remains unchanged. For small x the gradient

of the new field
vt 0= 25 o (- o)

is greater than in (9). Such a temperature field determines the heat flux &F which is an estimate of the
upper limit of the actual flux &,.

The lower limit is derived from the temperature field

U, )= Uyexp (-— (Zx ) (12)

which is the first term of (9). For small x the gradient of field (12) is smaller than that of (9). Hence the
heat flux &f* calculated by formula (10) with (12) taken into consideration defines the lower limit of possible

values of &,.
The expressions for heat fluxes &f and &f* in dimensionless parameters are of the form
L Pe | few (” 5 _Z‘Q\)
Q1=1—exp(—T5é)——~2~ s‘exp(~ 5 )erf(Zl)dPe+ — \ 2
§ Va V/ Pe — Pe
Q' =1 —exp (—Pe); (19
here Qf = &f/Ugrbctan g and Qf* = &1*/U Abctan B are numbers proportional to heat fluxes &F and &f*,

respectively; Pe = v;x/a is the Peclet number; Pe = v,h /acos B is the maximum value of the Peclet number
inagivenprocess; Z; = Pe/2¥Pe — Pe is the value of complex Z at the shear line.

d Pe, (13)
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_ With increasing Peclet number, functions QF and QF* tend asymptotically to unity (Fig. 2). When
Pe > 5, it may be assumed that Q¥ = QF* = Q; = 1. In suchcases theheat flux reaching the workpiece from
the chip-formation zone is calculated by formula

@, = Uy A betg p. (15)

The depth of cut and the cutting speed do not appear in (15). At Pe > 5 these parameters affect the
heat flux only if they vary the angle 3 of inclination of the strain zone.

Equation (15) shows that the heat flux is directly proportional to the temperature of the nominal slip
plane; and the variation of the heat flux affects, in turn, the temperature of U,. To elucidate this effect we
calculate the mean temperature in the strain zone from the heat balance of the latter:

(D - (Dl + cDZv
Awhbo = Uy A betg p + Uphbuey, (16)
Ay

¢y + (h)y thctg B

Let the angle 8 of inclination of the strain zone tend to zero with constant parameters v, A, h, and b.
In accordance with (15) the heat flux will then tend to increase infinitely. This becomes evident, if one finds
the limit of expression (16) for 8 — 0, and then elucidates the behavior of the heat flux. Using the expres-
sion known in the theory of cutting, we obtain

limU, = lim -21ctgB T e@ =1 _ oho (17)
B-0 B0 cy + (hoythctg B A

Substituting (17) into (15), we conclude that the heat flux infinitely increases.

Let now the angle of inclination of the strain zone increase. When 8 — /2, the heat flux reaching the
workpiece tends to zero. At high cutting speeds and increased angle 8 the second term in the denominator
in formula (16) may be neglected, and the temperature calculated by the simpler formula

Uo = A\VC@I.

The validity of formula (15) was checked by special tests. Cylindrical test pieces, made from grade
35 steel, were turned in reverse cuts and their heat content was measured. This made possible the caleu-
lation of the total heat flux to the workpiece. In these tests the angle g of the strain zone inclination was
held approximately constant at 25°. Machining was by a square-nosed cutter 2.1 mm wide with a T15K6
hard alloy tip (¥ = 10°, = 10°. The depth of cut was 0.3 mm and the feed 2.08 mm /rev.

Under these machining conditions the heat flux to the workpiece may be considered as the sum
Oz = @, + Dy (18)

of two fluxes: the flux from the strain zone and the one due to friction at the relief flank of the cutter. The
latter may be expressed by

@, = Fo. (19)

The first term of (18) will be constant,if ina given series oftests Pe > 5, and parameters Uy, b, and B
are constant. In this case the curve of &y is obtained from (19) by adding &, = const. Taking into account
that ®; = 0 when v = 0, it is possible to determine &, by extrapolating the experimentally obtained dependence
(18) to zero cutting speed. The segment cut off on the ®-axis gives the value of the heat flux from the strain
zone to the workpiece.

Experimental results are shown in Fig. 3. The heat flux from the strain zone to the workpiece cal -
culated by formula (15) for the same conditions of cutting is 72 W, which is in good correlation with ex-
perimental data.

NOTATION

v is the velocity of the medium;

Vi, Vo are components of the medium velocity;
h,b are the depth and width of cut, respectively;
y is the coordinate defining the rod position;
t is the time of heating of the rod;
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is the coordinate of the point of temperature calculation;

is the mean temperature of the slip surface (idealized stress zone);

are the coefficients of thermal diffusivity and conductivity, respectively;

is the volumetric specific heat of the machined material;

is the specific strain work;

is the tangential stress in the nominal slip plane;

is the thermal power of the strain zone;

is the heat flux to the workpiece from the strain zone;

is the heat flux to the chip;

‘is the heat flux to the workpiece generated by the cutter clearance flank against the workpiece;
is the total flux reaching the workpiece;

is the force of friction between the cutter clearance flank and the workpiece;
is the angle between the nominal slip plane and the shear plane.
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